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Synopsis

Programming Language Synthesis (PLS): a set of techniques for

automatically generating a high-level programming language from

a restricted set of low-level instructions with custom semantics.

Application: Automated generation of executable exploits via

Data-Oriented Programming (DOP) [3].

Data-Oriented Programming in a Nutshell

Consider this C program with a classical vulnerability:

1 int m, n, p, q; int *a, *b, *c;
2 char buf[1024];
3 ...
4 while (m--) {
5 gets(buf); // buffer overflow: can override variables at line 1
6 if (n == 0)
7 printf("%d", *a);
8 else if (n > 10)
9 *b = p;

10 else if (n > 5)
11 *c += q;
12 }

An attacker can manipulate the variables m, n, p, q, etc, thereby execut-
ing the program’s arithmetic operations, assignment operations, and

arbitrary memory reads. DOP is resilient against general defenses tar-

geting control flow hijacking, such as including CFI, DEP, and ASLR.

Our motivation: Study DOP from the Synthesis perspective.

Our Approach: Doppler
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Step 1: FromVulnerabilities to Automata

Doppler adapts Angluin’s L* Algorithm [1] to learn a deterministic finite

automaton (DFA) from a set of vulnerable code’s elements:

Valid variables: variables controlled by attackers (e.g., m, n above)

Valid statements: instructions using valid variables

Attack traces: reachable traces containing valid statements

An automaton for the vulnerable program above.

Step 2: FromAutomata to Grammars

Doppler applies the state elimination method and Brzozowski algo-

rithm [2] to convert the DFA to the attack grammar:

Value Val integers

Valid variables Var a, b, c, p, q
Valid statements VS ::= init : V ar = V al

| vs1 : init; ∗b = p
| vs2 : init; ∗c = ∗c + q
| vs3 : init; print(”%d”, ∗a)

Attack attack ::= (vs1 + vs2 + vs3 )∗

Step 3: Writing High-Level Programs

Doppler compiles a program written in a high-level attack grammar to

the payload for valid variables in the vulnerable program.

Two examples of attack programs in our attack grammar (left) and the

respective pseudo-code (right):

Example 1: Arbitrary Memory Read

vs3 (init a to addr of secret variable) int* i = & secret;

print(*i);

Example 2: Fibonacci Sequence

fibonacci(n){

vs1 ; vs1 (init b to addr of i, j) i = 1; j = 1;

(init p to 1)

( for(k=2; k≤ n; k + +){
vs3 (init a to addr of j, get value of j)

vs1 (init b to addr of t, p to value of j) t=j;

vs3 (get value of i)

vs2 (init c to addr of j, q to value of i) j=j+i;

vs3 (get value of t)

vs1 (init b to addr of i, p to value of t) i=t;

}

)*n − 2 (repeat in n − 2 times)

vs3 (init a to addr of j) print(j);

}

Compiling: Doppler maps an attack program back to an attack trace in

the original program, solves the path constraint by symbolic execution,

and constructs a concrete exploit payload.

FutureWork

Formally proving realisability: for any program written in an attack

grammar, there must be a valid exploit payload to produce a

semantically equivalent attack trace in the vulnerable program.

Formally proving PLS completeness: we discover the space of all

exploits that can be executed via DOP on a vulnerable program.

Increasing expressivity: going beyond regular languages.
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