
Synthesising Programming Languages
Yuxi Ling

National University of Singapore

Synopsis

Programming Language Synthesis (PLS): a set of techniques for

automatically generating a high-level programming language from

a restricted set of low-level instructions with custom semantics.

Application: Automated generation of executable exploits via

Data-Oriented Programming (DOP) [3].

Data-Oriented Programming in a Nutshell

Consider this C program with a classical vulnerability:

1 int m, n, p, q; int *a, *b, *c;
2 char buf[1024];
3 ...
4 while (m--) {
5 gets(buf); // buffer overflow: can override variables at line 1
6 if (n == 0)
7 printf("%d", *a);
8 else if (n > 10)
9 *b = p;

10 else if (n > 5)
11 *c += q;
12 }

An attacker can manipulate the variables m, n, p, q, etc, thereby execut-
ing the program’s arithmetic operations, assignment operations, and

arbitrary memory reads. DOP is resilient against general defenses tar-

geting control flow hijacking, such as including CFI, DEP, and ASLR.

Our motivation: Study DOP from the Synthesis perspective.

Our Approach: Doppler

Vulnerable
Program

Entry Point

Programming Language Synthesizer

Exploit Program
Language

Exploit
Programs

Users

Exploit Program Compiler

Execution Trace

Variable Assignments

DFA

Exploit PayloadExploits Succeed

Regular
Grammar Constraints

Valid Variables

Valid Statements

Execution Traces

Preliminary Elements

L*Symbolic
Execution

Brzozowski/
State Elimination

Rules

Step 1: FromVulnerabilities to Automata

Doppler adapts Angluin’s L* Algorithm [1] to learn a deterministic finite

automaton (DFA) from a set of vulnerable code’s elements:

Valid variables: variables controlled by attackers (e.g., m, n above)

Valid statements: instructions using valid variables

Attack traces: reachable traces containing valid statements

An automaton for the vulnerable program above.

Step 2: FromAutomata to Grammars

Doppler applies the state elimination method and Brzozowski algo-

rithm [2] to convert the DFA to the attack grammar:

Value Val integers

Valid variables Var a, b, c, p, q
Valid statements VS ::= init : V ar = V al

| vs1 : init; ∗b = p
| vs2 : init; ∗c = ∗c + q
| vs3 : init; print(”%d”, ∗a)

Attack attack ::= (vs1 + vs2 + vs3)∗

Step 3: Writing High-Level Programs

Doppler compiles a program written in a high-level attack grammar to

the payload for valid variables in the vulnerable program.

Two examples of attack programs in our attack grammar (left) and the

respective pseudo-code (right):

Example 1: Arbitrary Memory Read

vs3 (init a to addr of secret variable) int* i = & secret;

print(*i);

Example 2: Fibonacci Sequence

fibonacci(n){

vs1 ; vs1 (init b to addr of i, j) i = 1; j = 1;

(init p to 1)

(for(k=2; k≤ n; k + +){
vs3 (init a to addr of j, get value of j)

vs1 (init b to addr of t, p to value of j) t=j;

vs3 (get value of i)

vs2 (init c to addr of j, q to value of i) j=j+i;

vs3 (get value of t)

vs1 (init b to addr of i, p to value of t) i=t;

}

)*n − 2 (repeat in n − 2 times)

vs3 (init a to addr of j) print(j);

}

Compiling: Doppler maps an attack program back to an attack trace in

the original program, solves the path constraint by symbolic execution,

and constructs a concrete exploit payload.

FutureWork

Formally proving realisability: for any program written in an attack

grammar, there must be a valid exploit payload to produce a

semantically equivalent attack trace in the vulnerable program.

Formally proving PLS completeness: we discover the space of all

exploits that can be executed via DOP on a vulnerable program.

Increasing expressivity: going beyond regular languages.

References:

[1] Dana Angluin. Learning regular sets from queries and counterexamples. Information and computation, 75(2):87–106, 1987.

[2] Janusz A Brzozowski. Derivatives of regular expressions. Journal of the ACM (JACM), 11(4):481–494, 1964.

[3] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and Zhenkai Liang. Automatic generation of data-oriented exploits. In USENIX Security Symposium, pages 177–192, 2015.

https://yuxiling.github.io PLDI 2024, Copenhagen, Denmark. June 2024. Student Research Competition yuxiling@u.nus.edu

https://yuxiling.github.io
mailto:yuxiling@u.nus.edu

