Synthesising Programming Languages

Yuxi Ling

National University of Singapore

Synopsis

= Programming Language Synthesis (PLS): a set of techniques for
automatically generating a high-level programming language from
a restricted set of low-level instructions with custom semantics.

= Application: Automated generation of executable exploits via
Data-COriented Programming (DOP) [3].

Data-Oriented Programming in a Nutshell

Consider this C program with a classical vulnerability:

1int m, n, p, q; 1int *a, *b, *c;
o> char buf [1024];

3...

awhile (m--) {

5 gets(buf); // buffer overflow: can override variables at line 1
6 if (n == 0)

7 printf ("%d4d", *xa);

8 else if (n > 10)

9 *b = p;

10 else if (n > 5)

11 *C += Qq;

12 }

An attacker can manipulate the variablesm, n, p, g, etc, thereby execut-
ing the program’s arithmetic operations, assignment operations, and
arbitrary memory reads. DOP is resilient against general defenses tar-
geting control flow hijacking, such as including CFIl, DEP, and ASLR.

Our motivation: Study DOP from the Synthesis perspective.
Our Approach: Doppler

Programming Language Synthesizer

JHZL Preliminary Elements

, Users
Brzozows ki/

Entry Point Valid Variables State Elimination

Symbolic * ' i
EY el L DFA (iiillﬁl; | Constraints Expﬁon Program ‘ | Exploit |
xecution Valid Statements anguage Programs

Rules T

Vulnerable Execution Traces Exploit Program Compiler
Program

Execution Trace

v

= v

Exploits Succeed Exploit Payload

Step 1. From Vulnerabilities to Automata

¢ «—
> @ < Variable Assignments

Doppler adapts Angluin’s L* Algorithm [1] to learn a deterministic finite
automaton (DFA) from a set of vulnerable code’s elements:

= Valid variables: variables controlled by attackers (e.g., m, n above)
= Valid statements: instructions using valid variables
= Attack traces: reachable traces containing valid statements

UVS1,UVS2,VUS3

VS1,UVS2,VUS3 ’
&

An automaton for the vulnerable program above.

Step 2: From Automata to Grammars

Doppler applies the state elimination method and Brzozowski algo-
rithm [2] to convert the DFA to the attack grammar:

Value Val Integers
Valid variables Var a, b, c,p,q
Valid statements VS = init: Var = Val

vs$; it xb = p

VSg :1nat; kc = *C + q

vsg - tnit; print(”"%d”, xa)
attack ::== (vS; + vSs + vsg)*

Attack

Step 3: Writing High-Level Programs

Doppler compiles a program written in a high-level attack grammar to
the payload for valid variables in the vulnerable program.

Two examples of attack programs in our attack grammar (left) and the
respective pseudo-code (right):

Example 1: Arbitrary Memory Read

int™ i = & secret:
orint(*i);

vss (iNit a to addr of secret variable)

Example 2: Fibonacci Sequence

fibonacci(n){
vs;: vsy (init b to addr of i, j) i=1;j=1;
(initp to 1)
(for(k=2; k< n; k+ +){
vss (init a to addr of |, get value of j)
vs; (init b to addr of t, p to value of j) | t=j;
vss (get value of i)
Vs (init ¢ to addr of |, g to value of i) | |=j+i;
vss (get value of t)
vsy (init b to addr of i, p to value of t) = i=t;

)*n — 2 (repeat in n — 2 times)

vss (init a to addr of j) print(j);

j

Compiling: Doppler maps an attack program back to an attack trace in
the original program, solves the path constraint by symbolic execution,
and constructs a concrete exploit payload.

Future Work

= Formally proving realisability: for any program written in an attack
orammar, there must be a valid exploit payload to produce a
semantically equivalent attack trace in the vulnerable program.

= Formally proving PLS completeness: we discover the space of all
exploits that can be executed via DOP on a vulnerable program.

= Increasing expressivity: going beyond regular languages.

References:

1] Dana Angluin. Learning regular sets from queries and counterexamples. Information and computation, 75(2):87-106, 1987.
2] Janusz A Brzozowski. Derivatives of regular expressions. Journal of the ACM (JACM), 11(4):481-494, 1964.
3] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and Zhenkai Liang. Automatic generation of data-oriented exploits. In USENIX Security Symposium, pages 177-192, 2015.

https.//yuxiling.github.io

PLDI 2024, Copenhagen, Denmark. June 2024. Student Research Competition

yuxiling@u.nus.edu

https://yuxiling.github.io
mailto:yuxiling@u.nus.edu

